Towards Molecular-level Similarity Search based on Text Data

Presenter: Ang Yihao, Miao Yisong

Outline

- I. Motivation & Background
- II. Workflow
- III. Results Analysis
- IV. Discussions

I. Motivation & Background

Motivation

- Store text into DNA is promising.
- Information explosion.
- DNA is a promising medium for data storage.

Motivation

• What if we want to retrieve two similar "books" from the "library"?

Background – Success in Image Similarity Search

- The workflow of comparing the images of *cat* and *plane*.
- Encoder: image embedding \rightarrow DNA sequence.
- Predictor: Imitate the behavior of NUPACK on DNA sequence hybridization.

II. Workflow

Workflow – Overview

- The workflow of embedding text into DNA data storage system and support similarity search.
 - Feature extraction
 - Training of encoder and predictor
 - Feature extraction for query and target
 - Simulation

Workflow – Overview

Workflow – Overview

Workflow – Feature Extraction

- We choose to use Sentence-BERT model.
- This is because Sentence-BERT has been reported good performance on text similarity matching tasks.
 - Input: Sentences.
 - Output: Sentence embedding. (i.e., feature vectors)

Workflow – Training of Encoder and Predictor

- Training Objective: Encode similar sentences into similar DNA sequences so that they have a high hybridization yield.
- Encoder:
 - Input: Positive pairs of sentences embeddings and Negative pairs. Output: DNA sequences.
 - Supervision: Predictor's judge on whether the two DNA sequences are going to hybridize.
- Predictor:
 - Input: Pairs of DNA sequences. Output: Hybridization yield.
 - Supervision: NUPACK's simulation as ground truth.

Workflow – Feature Extraction for Query and Target

- The same as processing the training data.
- We use the same feature extraction SBERT.
 - Input: Target/Query Sentence.
 - Output: Sentence embedding. (i.e., feature vectors)

Workflow – Simulation

	target_feat	‡ query_fea
sentence1-0	ACGTAAACAC	ATGGCTAAAC
sentence1-1	AGGGACACAC	ATGGCTAAAC
sentence1-2	TGGCGAGCAC	ATGGCTAAAC
sentence1-3	TTGGGCAAAC	ATGGCTAAAC
sentence1-4	TATGGCTCCC	ATGGCTAAAC
sentence1-5	TAGTGAAAAC	ATGGCTAAAC
sentence1-6	TTCTGGAAAC	ATGGCTAAAC
sentence1-7	TGGATTACAC	ATGGCTAAAC
sentence1-8	TTAGTCACACT	ATGGCTAAAC
sentence1-9	TTAGTCACACT	ATGGCTAAAC

• Simulation will be using NUPACK (CUPACK interface).

III. Results Analysis

- Evaluation Process
- Experiment Setup
- Evaluation Results
- Case Study
 - Distance Analysis
 - Semantic Similarity
 - Retrieval Quality

- Observations from NLP
 - Sentences that have close Euclidean distances of feature vectors are semantically similar.
 - Examples
 - The cat is licking a bottle.
 - A cat is licking itself.
 - A cat plays with a small bottle.
- Adopt Euclidean distances of feature vectors as ground truth
- Aim to find pairs of sentences with similar feature vectors and similar DNA sequence

- Evaluation Process
 - Given k, Overlapping Ratio = $\frac{\# k \text{NN Sequence}}{\# k \text{NN V}}$

kNN Vector

• Higher the overlapping ratio, the more precise the model retrieves

- Experiment Setup
 - Query: 9 sentences
 - 'A plane is taking off.',
 - 'A woman is peeling a potato.',
 - 'The cat is licking a bottle.',
 - 'Steve Jobs is the CEO of Apple Inc. She hold many dollars of money.',
 - 'Computer science is one of the most revolutionary fields in scientific research.',
 - 'The all-* models where trained on all available training data (more than 1 billion training pairs) and are designed as general purpose models.',
 - 'The church has cracks in the top.',
 - 'The statue is offensive and people are mad that it is on display.',
 - 'A group of people are playing in a symphony.'
 - Target Dataset: STSB (2758 sentences), SNLI (20000 sentences)
 - Feature Extractor: MPNet, MiniLM
 - Encoder: early stop at different checkpoints
 - k = 1, 10, 50, 100, 500, 1000, 2000

- Evaluation Results
 - 1. Some parameter combinations can get accurate 1 NN
 - 2. Some parameter combinations can get over 80% accurate 10 NN
 - 3. Although the initial NNs are accurate, the ratio drops as k increases
 - 4. As k continues to increase, the ratio will converge at around 75%

One line: one set of parameter combination

- Evaluation Results
 - Effect of each kind of parameters (colors)
 - Feature Extractor: MPNet, MiniLM
 - Encoder: early stop at different checkpoints
 - Can select some models with better performance
 - Query ID
 - Queries that are related to this dataset perform better

- Evaluation Results
 - How to select a better set of parameters?
 - For all parameter combinations, given each k value, get the mean and median of the ratio, apply the following rules:
 - 1. 1 NN should be accurate
 - 2. 10 NN should be high
 - 3. 50—100 NN should be relatively high

- Case Study 1
 - Query: <u>A woman is peeling a potato.</u>
 - Dataset: STSB
 - Feature Extractor: MPNet
 - Two Distance @ kNN
 - 1. Have accurate 1 NN
 - 2. A plateau in the middle
 - 3. Close match of two curves

- Case Study 1
 - Query: <u>A woman is peeling a potato.</u>
 - Dataset: STSB
 - Feature Extractor: MPNet
 - Semantic Similarity

Feature Vector NN	DNA Sequence NN
A woman is peeling potato.	A woman is peeling potato.
A person is peeling a potato.	A person is peeling a potato.
A man is peeling a potato.	A woman is cutting potatoes.
The lady peeled the potato.	A woman is chopping a peeled potato into slices.
•••	
A person is peeling a potato with a potato peeler.	A man is peeling a potato.

- Case Study 1
 - Query: <u>A woman is peeling a potato.</u>
 - Dataset: STSB
 - Feature Extractor: MPNet
 - Retrieval quality @ 10NN, 50NN, 100NN

- Case Study 2
 - Query: The cat is licking a bottle.
 - Dataset: STSB
 - Feature Extractor: MiniLM
 - Two Distance @ kNN
 - 1. Have accurate 1 NN
 - 2. A plateau in the middle
 - 3. Close match of two curves

- Case Study 2
 - Query: The cat is licking a bottle.
 - Dataset: STSB
 - Feature Extractor: MiniLM
 - Semantic Similarity

Feature Vector NN	DNA Sequence NN	
A cat is licking a bottle.	A cat is licking a bottle.	
A cat is licking itself.	A cat plays with a small bottle.	
A cat plays with a small bottle.	A cat is licking itself.	
A white cat is licking and drinking milk kept on a plate.	A white cat is licking and drinking milk kept on a plate.	
•••	•••	
A kitten is drinking milk from a bowl.	A cat is eating some corn.	

- Case Study 2
 - Query: The cat is licking a bottle.
 - Dataset: STSB
 - Feature Extractor: MiniLM
 - Retrieval quality @ 10NN, 50NN, 100NN

IV. Discussions

Discussions

- Limitations
 - Scalability
 - Efficiency
 - Hybridizations

Conclusion

- Contributions
 - Replicate the workflow on image data
 - Extend the framework to text data
 - Evaluate empirically the results of similarity search from text data
- The workflow introduced in the original paper can be extended to other modality.
- In particular, text data can be input in this framework and training process needs to be modified.
- The results show the encoded DNA sequence of sentences preserve semantic similarity

Reference

- 1. Bee, C., Chen, Y. J., Queen, M., Ward, D., Liu, X., Organick, L., ... & Ceze, L. (2021). Molecular-level similarity search brings computing to DNA data storage. *Nature communications*, *12*(1), 1-9.
- 2. Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. *arXiv* preprint arXiv:1908.10084.
- 3. Song, K., Tan, X., Qin, T., Lu, J., & Liu, T. Y. (2020). Mpnet: Masked and permuted pre-training for language understanding. *arXiv preprint arXiv:2004.09297*.
- 4. Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., & Zhou, M. (2020). Minilm: Deep self-attention distillation for taskagnostic compression of pre-trained transformers. *arXiv preprint arXiv:2002.10957*.

