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|. Motivation & Background



Motivation

* Store text into DNA is promising.

* Information explosion.
* DNA is a promising medium for data storage.
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Motivation

 What if we want to retrieve two similar “books” from the “library”?
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Background — Success in Image Similarity Search
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* The workflow of comparing the images of cat and plane.

* Encoder: image embedding = DNA sequence.
* Predictor: Imitate the behavior of NUPACK on DNA sequence hybridization. 6



Il. Workflow



Workflow — Overview

* The workflow of embedding text into DNA data storage system and support similarity

search.
* Feature extraction
* Training of encoder and predictor
* Feature extraction for query and target

e Simulation



Workflow — Overview
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Workflow — Overview

‘Feature Extration
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Workflow — Feature Extraction

‘Feature Extration

SBERT net
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 We choose to use Sentence-BERT model.

* This is because Sentence-BERT has been reported good performance on text
similarity matching tasks.

* |[nput: Sentences.
e Qutput: Sentence embedding. (i.e., feature vectors)
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Workflow — Training of Encoder and Predictor
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* Training Objective: Encode similar sentences into similar DNA sequences so that
they have a high hybridization yield.

* Encoder:
* Input: Positive pairs of sentences embeddings and Negative pairs. Output: DNA sequences.
e Supervision: Predictor’s judge on whether the two DNA sequences are going to hybridize.

* Predictor:
* Input: Pairs of DNA sequences. Output: Hybridization yield.

e Supervision: NUPACK'’s simulation as ground truth.
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Workflow — Feature Extraction for Query and Target

A Sentence-Transformers
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* The same as processing the training data.
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* We use the same feature extraction SBERT.
* |Input: Target/Query Sentence.
e Qutput: Sentence embedding. (i.e., feature vectors)
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Workflow — Simulation
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e Simulation will be using NUPACK (CUPACK interface).
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I1l. Results Analysis



Results Analysis

e Evaluation Process
* Experiment Setup
e Evaluation Results

e Case Study
e Distance Analysis
e Semantic Similarity
e Retrieval Quality
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Results Analysis

e Observations from NLP
e Sentences that have close Euclidean distances of feature vectors are semantically similar.

* Examples
* The cat is licking a bottle.

e Acatis licking itself.
e A cat plays with a small bottle.

* Adopt Euclidean distances of feature vectors as ground truth

* Aim to find pairs of sentences with similar feature vectors and similar DNA sequence
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Results Analysis

 Evaluation Process

# KNN Sequence

* Given k, Overlapping Ratio =

# kNN Vector

* Higher the overlapping ratio, the more precise the model retrieves
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Results Analysis

* Experiment Setup

* Query: 9 sentences
* 'A plane is taking off.’,
 'Awoman is peeling a potato.’,
* 'The catis licking a bottle.’,
e 'Steve Jobs is the CEO of Apple Inc. She hold many dollars of money.',
* 'Computer science is one of the most revolutionary fields in scientific research.’,

* 'The all-* models where trained on all available training data (more than 1 billion training pairs) and are
designed as general purpose models.’,

* 'The church has cracks in the top.,
* 'The statue is offensive and people are mad that it is on display.’,
e 'A group of people are playing in a symphony.

Target Dataset: STSB (2758 sentences), SNLI (20000 sentences)
Feature Extractor: MPNet, MiniLM

Encoder: early stop at different checkpoints
k=1,10,50,100,500,1000,2000 o



Results Analysis

e Evaluation Results

1.

2.
3.
4

One line:

one set of parameter

combination

Some parameter combinations can get accurate 1 NN

Some parameter combinations can get over 80% accurate 10 NN
Although the initial NNs are accurate, the ratio drops as k increases
As k continues to increase, the ratio will converge at around 75%
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Different Feature Extractors

Results Analysis
e Evaluation Results o
e Effect of each kind of parameters (colors) 0.0

.. 1 NN 10 NN 50 NN 100 NN 500 NN 1000 NN  2000NN
* Feature Extractor: MPNet, MiniLM Number of Nearest Neighbors

Different Encoders

* Encoder: early stop at different checkpoints 1.04
* Can select some models with better performance 0.8
* QueryID

* Queries that are related to this dataset perform
better
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Results Analysis

e Evaluation Results
 How to select a better set of parameters?

* For all parameter combinations, given each k value, get the mean and median of the
ratio, apply the following rules:
1. 1 NN should be accurate
2. 10 NN should be high
3. 50—100 NN should be relatively high

o o o =
IS o 0 o

Overlapping Ratio

o
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Results Analysis

e Case Study 1

e Query: Awoman is peeling a potato.

* Dataset: STSB
* Feature Extractor: MPNet
e Two Distance @ kNN

1.
2.
3.

Have accurate 1 NN
A plateau in the middle
Close match of two curves

Edit Distance of DNA Sequence
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Results Analysis

e Case Study 1
e Query: Awoman is peeling a potato.
* Dataset: STSB
* Feature Extractor: MPNet

Feature Vector NN DNA Sequence NN

A woman is peeling potato. A woman is peeling potato.
A person is peeling a potato. A person is peeling a potato.
A man is peeling a potato. A woman is cutting potatoes.
The lady peeled the potato. A woman is chopping a peeled potato into slices.

A person is peeling a potato with a potato peeler. A man is peeling a potato.

LT
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Results Analysis

e Case Study 1

e Query: Awoman is peeling a potato.

Dataset: STSB
Feature Extractor: MPNet

e Retrieval quality @ 10NN, 50NN, 100NN
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Results Analysis

e Case Study 2

* Query: The cat is licking a bottle.

* Dataset: STSB
* Feature Extractor: MiniLM
e Two Distance @ kNN

1.
2.
3.

Have accurate 1 NN
A plateau in the middle
Close match of two curves
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Results Analysis

e Case Study 2
e Query: The cat is licking a bottle.

* Dataset: STSB
* Feature Extractor: MiniLM

Feature Vector NN DNA Sequence NN

A cat is licking a bottle. A cat is licking a bottle.
A cat is licking itself. A cat plays with a small bottle.
A cat plays with a small bottle. A cat is licking itself.

A white cat is licking and drinking milk kept on a plate. A white cat is licking and drinking milk kept on a plate.

A kitten is drinking milk from a bowl. A cat is eating some corn.



Results Analysis

e Case Study 2

* Query: The cat is licking a bottle.

* Dataset: STSB
* Feature Extractor: MiniLM
e Retrieval quality @ 10NN, 50NN, 100NN

o o =
o 0 o

©

Proportion Retrieved
N

o
N
.

o©
o

Proportion Retrieved

i /// e o
0.0 0.2 0.4 0.6
10 NN Recall

° o =
o © o

°

Proportion Retrieved
N

o
N
'

o
o

0.4 0.6

50 NN Recall

0.4 0.6
100 NN Recall

1.0

28




V. Discussions
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Discussions

* Limitations
* Scalability
e Efficiency
* Hybridizations
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Conclusion

e Contributions
* Replicate the workflow on image data

* Extend the framework to text data
* Evaluate empirically the results of similarity search from text data

* The workflow introduced in the original paper can be extended to other modality.

* |n particular, text data can be input in this framework and training process needs to
be modified.

* The results show the encoded DNA sequence of sentences preserve semantic
similarity
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