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What is discourse semantics?

Lexical Semantics Discourse Semantics
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Relationships between words and phrases; Larger nested units;

Non-contextual. Depend on context.
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The big question — Do LLMs understand discourse?
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Existing evaluations

- Classification task on a hierarchical taxonomy

- Existing Metrics: Acc / F1.

e Acc/F1are notsuitable for the evaluation for LLMs:

« Prompts carry randomness.

« On
fait

y one-off predictions. Cannot measure the

nfulness of the prediction.

Top Second

Method FI  Acc | F1  Acc
Random 2474 2547 | 6.48 8.78
Liu et al. (2020) 63.39 69.06 | 35.25 58.13
Jiang et al. (2022) 65.76 72.52|41.74 61.16
Long and Webber (2022) | 69.60 72.18 | 49.66 61.69
Chan et al. (2023b) 70.84 75.65 | 49.03 64.58
ChatGPTprompt 29.85 32.89 | 9.27 15.59
ChatGPTpe 3378 3494 | 10.73 20.31
[C]natGPTICL 36.11 44.18} 16.20 24.54

F1 and Accuracy scores are reported in

most papers.

Source: ChatGPT Evaluation on Sen
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Socratic Questioning

Discourse relation: Contingency.Cause.Result

Argl: When I want to buy, they run from you -- they keep changing their prices.

Arg?2: It's very frustrating.

W

| think it’s a Contingency discourse.
y’

There is a cause-result event pair.

Can we comprehend them as other
relations?

Socratic method is to ask a series of questions to challenge thoughts, clarify ideas and deepen understandings.



Discursive Socratic Questioning (DiSQ)

8 o
Is “they keep changing their prices” a reason for “it’s very frustrating”?

Ground-Truth Answer: True Model’s Answer: True

Targeted Score =1

DiSQ is composed of three scores to evaluate models’ faithfulness.



Discursive Socratic Questioning (DiSQ)
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Is “they keep changing their prices” a reason for “it’s very frustrating”?

Ground-Truth Answer: True Model’s Answer: True
Targeted Score =1

Is “they keep changing their prices” contrasted with “it’s very frustrating”?

Ground-Truth Answer: False Model’s Answer: True ‘

Counterfactual Score = 0

DiSQ is composed of three scores to evaluate models’ faithfulness.



Discursive Socratic Questioning (DiSQ)
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Is “they keep changing their prices” a reason for “it’s very frustrating”?

Ground-Truth Answer: True Model’s Answer: True |

Targeted Score =

Is “they keep changing their prices” contrasted with “it’s very frustrating”?

Ground-Truth Answer: False Model’s Answer: True ‘

Counterfactual Score =

Is “it’s very frustrating” the result of “they keep changing their prices”?

————————

Ground-Truth Answer: True Model’s Answer: False

v

Consistency Score = 0

DiSQ is composed of three scores to evaluate models’ faithfulness.



Discursive Socratic Questioning (DiSQ)

In this paper, we address:
e What to ask?

 How well do models answer?
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Annotate Salient Signal

Discourse relation (2): Contingency.Cause.Result
Argi: When I want to buy, they run from you — they

keep changing their prices
Args: It’s very frustratin

s11: I want to buy;
s12: they run from you;

s13: they keep changing their prices
s21: It’s very frustratin

Salient signals: (s13, s21,7), r is “the reason for”.

Targeted question: Is s;3 the reason for s21?
Counterfactual question: Does s;3 contrast against
821?

Converse question: Is s2; the result of s137

Event pair as the
salient signal.

i

ﬂ) ut X ?utput y \
{ “DR summary”: ...

“Discourse relation”: ... .
“Eventl Comprehension”: ...

(11 .
{::g;,,; “Event2 Comprehension”: ...

# “What if ER holds”: ...
(14 2.
Event1™: ... “What if ER does not hold”: ...

“Event2”: ... “Predicting ER”: ...

\“Event relation (ER)”: ... “Final prediction”:
} D ees
}

In-context learning
(ICL) for annotation.




Discourse relation (R)

Annotation Outcome

Event relation (7)

Question statistics for

Comparison.Concession  deny or contradict with Bi- 1,764 PDTB dataset.
Comparison.Contrast contrast with Bi- 876
Contingency.Reason reason of Uni- 3,264
Contingency.Result result of Uni- 2,796
Expansion.Conjunction contribu.’f[e t? the same Bi- 4,596 H uman Verlflcatlon Of
situation
Expansion.Equivalence equivalent to Bi- 420 our annotation.
Expansion.Instantiation example of Uni- 2,352
Expansion.Level-of-detail provide more detail about Uni- 3,888
Expansion.Substitution alternative to Uni- 216 _ A1&A2 A1&ICL A2&ICL
Temporal.Asynchronous happen before/after Uni- 1,368 AICEINERIER 85.2% 835.2%  83./%
’ (o) o o)
Temporal.Synchronous happen at the same time as Bi- 840 Cohen’s k 38.0% 48.8% 44.9%
Total 99 380 Success Rate / 95.8% 93.8%
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Discursive Socratic Questioning for Evaluation

Type Formalization Expected  Score
Answer

Targeted Q: = {QG(s1, s2, r)} True St

CF Qc = {QG(s1, 82,7 )} False Scf

Converse Q; = {QG(s2,s1, T )} Equivalent  Scon
to original

13



Discursive Socratic Questioning for Evaluation

Type Formalization Expected  Score
Answer

Targeted Q: = {QG(s1,s2,7)}  True St

CF Q. = {QG(s1,s2,7")} False Scf

Converse Q; = {QG(sz2,s1,' )} Equivalent Scon
to original

Bi-directional

Is A contrasted with B? M Is B contrasted with A?
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Discursive Socratic Questioning for Evaluation

Type Formalization Expected  Score
Answer

Targeted Q: = {QG(s1,s2,7)}  True St

CF Q. = {QG(s1,s2,7")} False Scf

Converse Q; = {QG(sz2,s1,' )} Equivalent Scon
to original

Bi-directional

Is A contrasted with B? M Is B contrasted with A?
| Uni-directionall

15

Is A the reason of B? Is B the result of A?




Discursive Socratic Questioning for Evaluation

Discourse relation: Contingency.Cause.Result

Argl: When I want to buy, they run from you -- they keep changing their prices.

Arg2: It's very frustrating.

Algorithm 1 D1SQ interrogates a langue Discourse relation:

Input: Discourse d and its corresponding questions Q. Targeted question:

H = {2} > The history is initialized. Isthe result of B? O
Stage 1: Targeted and Counterfactual QA

for ¢; in Q; and Q. do
a; = LM(q = qi,c =d) > The model performs
QA. The context c is the discourse d. C terfactual tion:
H <+ (qi,ai) > The history is updated. elirlednieieuiiell glllesuieln

end for Is A contrasted with B?

Stage2: Converse QA L Is Athe example with B?

for (qz- CL»,;) in H do I -
) . - s A an alternative of B?
q = Lookup(q,{9Q., Q+)} > Look up the converse

question in converse question sets.

11: a; = LM(q = ¢i,c = d, (qi,ai) € H) > The model
executes QA on the converse question, ¢;, optionally
utilizing the previous response (g, a;) as supplemental
context.

12: H «— (qi, ;) > The history is updated.

13: end for

14: Output: H

ontingency

Al S Y

S Y XD
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Discursive Socratic Questioning for Evaluation

Discourse relation: Contingency.Cause.Result

Argl: When I want to buy, they run from you -- they keep changing their prices.

Arg2: It's very frustrating.

Algorithm 1 D1SQ interrogates a langue

Discourse relation:'Contingency

Input: Discourse d and its corresponding questions Q. Targeted question:

H = {2} > The history is initialized. Isthe result of B? O
Stage 1: Targeted and Counterfactual QA

for ¢; in Q; and Q. do
a; = LM(q = qi,c =d) > The model performs
QA. The context c is the discourse d. C terfactual tion:
H <+ (qi,ai) > The history is updated. elirlednieieuiiell glllesuieln

end for Is A contrasted with B?

Stage2: Converse QA L Is Athe example with B?

for (q,,; CL»,;) in H do I -
) . s A an alternative of B?
q = Lookup(q,{9Q., Q+)} > Look up the converse

question in converse question sets.

11: a; = LM(q = ¢i,c = d, (qi,ai) € H) > The model
executes QA on the converse question, ¢;, optionally
utilizing the previous response (g, a;) as supplemental

SR wbhe

S Y XA

context. | | Converse question:
g; o dt.‘o;_ (G, i) > The history is updated. (Given you answered A is the result
14: Output: H of B.) Is B the reason of A?

17



Discursive Socratic Questioning for Evaluation

Discourse relation: Contingency.Cause.Result

Argl: When I want to buy, they run from you -- they keep changing their prices.

Arg2: It's very frustrating.

Algorithm 1 DISQ interrogates a lang

1:

11:

12:
13:;
14:

S Y XA

Input: Discourse d and its corresponding questions Q.
H = {2}
Stage 1: Targeted and Counterfactual QA

for ¢; in Q¢ and Q. do

a; = LM(q = qi,c =d) > The model performs

QA. The context c is the discourse d.
H <+ (Qz’, ai)
end for

for (q,,;, CL»,;) in H do

§ = Lookup(q, {Q., Q:)} > Look up the converse
question in converse question sets.

a; = LM(q = ¢i,c = d, (qi,ai) € H) > The model
executes QA on the converse question, ¢;, optionally
utilizing the previous response (g, a;) as supplemental
context.
end for
Output: H

> The history is initialized.

> The history is updated.

> The history is updated.

Discourse relation:'Contingency

Targeted question:
IsAlthe result of B? O

Counterfactual question:
Is A contrasted with B?

Is A the example with B?
Is A an alternative of B?

Converse gquestion:
(Given you answered A is the result
of B.) Is B the reason of A?

18

= False],q; € {Q¢, O} (2)

N
1 5 5 ~
Scon = N Z: [ai = a’i]aQ’i S QaQi € Q (3)

Sdisq = St X Scf X Scon

DiSQ Score is the multiplication of the three scores because we
believe they are equally important (0.6, 0.6, 0.6) is better than

(0.9, 0.9, 0).



Experiment setup

Datasets: PDTB (WSJ News) and TED-MDB corpus (also in PDTB discourse style). TED has 448
instances and 8,378 questions, about half the size of PDTB.

E 3 Closed-source models: GPT-3.5 / GPT-4.

E & Open-source models: LLaMA-2 (with or without chat fine-tuning). Vieuna (further fine-tuned a
LLaMA based on user interaction). WizardLM (complex instruction).

Zero-shot evaluation: To mitigate the randomness from few-shot example selection, we adopt a zero-
shot approach. We experiment with 4 different templates and select the best, to marginalize the
impact of the templates.

19



verall Performance

Ideal Model GPT-4 GPT-3.5 Random Baseline

Consistency Consistency Consistency Consistency
100 100.0 100.0

0 PDTB Score =0.206

0 TED Score = 0.258 0 Score=0.125

0 PDTB Score =0.414

O Score=1.0 0 TED Score = 0.528

Targeted Counterfactual Targeted Counterfactual Targeted Counterfactual Targeted Counterfactual

LLaMA2-7B LLaMA2-13B LLaMA2-7B-Chat LLaMA2-13B-Chat

Consistency Consistency
100.0 / 100.0

Consistency Consistency
100.0 100.0

0 PDTB Score =0.174
0 TED Score=0.168

0 PDTB Score =0.253

0 PDTB Score =0.074 0 TED Score = 0.252

0 TED Score =0.029

0 PDTB Score = 0.098
0 TED Score =0.028

Targeted Counterfactual Targeted Counterfactual Targeted Counterfactual Targeted Counterfactual
Vicuna-13B Wizard-13B Wizard-13B-Code Wizard-13B-Math
Consistency Consistency Consistency Consistency
90.0 100.0 100.0 100.0
0 PDTB Score =0.325 0 PDTB Score =0.135 0 PDTB Score =0.225 0 PDTB Score =0.234
0 TED Score =0.355 0 TED Score=0.075 0 TED Score =0.207 0 TED Score =0.204
Targeted Counterfactual Targeted Counterfactual Targeted Counterfactual Targeted Counterfactual

20
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Consistency of DiSQ Scores

Different datasets.

4 PDTB

N 4
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DiSQ Scores under
different datasets.

w
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Different paraphrasing.

2 Original
O Paraphrase 1
Paraphrase 2

S o
N
? y
é “s ¢
’ O

L-7B L-7B-Chat L-13B L-13B-Chat V-13B W W-Code W-Math

DiSQ Scores under
different paraphrasing.



Impact of Discourse Relations on DiSQ Scores

Minority classes are still challenging for LLMs.

& &‘Q Y > - & > X N &
¥ >y & & ¥ ¥ & &S &
& & § § & & ) o Q Q 5 & &

> s ¢ S S S A A A A A <&
1. Random Basline 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
2A. LLaMA2-7B 0.074 0.029 0.083 0.094 0.095 0.076 0.056 0.087 0.067 0.156 0.035 0.048
3A. LLaMA2-7B-Chat 0.174 0231 0431 0.131 0.174 0213 0.104 0.120 0.150 0.199 0.108 0.040
4A.LLaMA2-13B 0.098 0.037 0.100 0.082 0.097 0.127 0.101 0.113 0.107 0.086 0.084  0.092
5A.LLaMA2-13B-Chat 0.253 0.193 0.477 0.129 0.172 0.288 0.157 0.326 0373 0.291 0.195 0.028
PDTB gA. Vicuna-13B 0.325 0.087 0513 0200 0353 0.369 0.000 0334 0462 0.195 0.511 0.069
7A. Wizard 0.135 0221 0256 0.067 0.107 0.170 0.072 0.167 0.128 0.108 0.097 0.082
8A. Wizard-Code 0225 0.032 0268 0.175 0287 0.121 0.008 0283 0329 0.174 0.545 0.109
9A. Wizard-Math 0234 0.132 0264 0241 0286 0.192 0.046 0240 0323 0201 0240 0.135
10A. GPT-3.5 0206 0.151 0278 0.082 0.161 0246 0.067 0257 0262 0.232 0388 0.000
11A. GPT-4 0414 0.053 0.567 0.119 0351 0.610 0.192 0.659 0.481 0.422 0.692 0.000
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Evaluation

RQ4: Impact of Linguistic Features

Previous context

Discourse relation: Contingency.Cause.Result . . )
Discourse relation: Contingency.Cause.Result

Argl: When I want to buy, they run from you -- they keep changing their prices.

Argl: When I want to buy, they run from you -- they keep changing their prices.

Arg2: It's very frustrating.

Arg2: It's very frustrating.

Subsequent context

lls o"
B w/o " w/ connective B w/o " w/ context
0.4 0.4
0.3 0.3
0.2 0.2
LLaMA2 Vicuna Wizard LLaMA2 Vicuna Wizard

23



Evaluation

RQ4: Impact of Linguistic Features

mappenbetoree B Unidirectional

“happen after”

Mean Consistency Score

= 60.6
w/o history  w/ history

LLaMA2-13B-Chat 78.6 70.1
Vicuna-13B 82.8 88.7 0.0 25.0 50.0 75.0 100.0
Wizard-Code 81.6 99.8 Bidirectional
Mean Consistency Score
=79.2

LLaMA model might overfit to verbatim keywords.

24
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’-------------------------------.

Conclusion

,&g s I' Discourse relation (R) Event relation (r) Q Type #ofQ 1
X2 2 Comparison.Concession  deny or contradict [ Bi- | 1,764 Output y .
@ ' with Input X { :
) ) ) : ) I Comparison.Contrast contrast with 876 { “DR . .
Is “they keep changing their prices” a reason for “it’s very frustrating”? 1 Contingency.Reason reason of Uni- 3,264 “Discourse relation”: ... ) summary”: ... o !
, . ' Contingency.Result result of Uni- 2,796 “Argl”: ... “Eventl Comprehens!on”: .
Ground-Truth Answer: True Model’s Answer: True I Expansion.Conjunction  contribute to the 4,596 “Ared” Event2 Comprehension”: ... I

I 1 1 : LR N ] .
: . same situation Prind St “What if ER holds”: ... '
Ta r'geted Score =1 Expansion.Equivalence equivalent to 420 Eventl”: ... «“ if ’., |
: Expansion.Instantiation example of Uni- 2,352 “Event2”: ... “Wha!i 1 .ER do,t:s not hold”’: ... 1
Is “they keep changing their prices” contrasted with “it’s very frustrating”? . Expansion.Level-of-detail provide more detail Uni- 3,888 “Event relation (ER)”: ... P.redlctlng.El.l ‘oo :
. - . about ' y “Final prediction”: ... .
Ground-Truth Answer: False Model’s Answer: True 1 Expansion.Substitution alternative to Unf- 216 } .
I Temporal.Asynchronous  happen before/after _Uni- 1,368 .
1 Temporal.Synchronous happen at the same m 840 1

Counterfactual Score = 0 I time as
1
1 Total 22,380 1
. . . . . 1
Is “it’s very frustrating” the result of “they keep changing their prices”? . :
Ground-Truth Answer: True ’ : ' : ' : ' ' : '
Model’s Answer: False +  We employ in-context learning as semi-automatic annotation for salient ,
1
. . d 1 N | I
Consistency Score = 0 ' ISCOUrse signals. .
! [
+

------------------------------------------------------------------------------------’

Discourse relation (R): Contingency.Cause.Result
keep changing their prices ) Different datasets. !
) : 1 _ 4 PDTB .
Argo: It’s very frustratin . et Hode Rardom pesene ores o © TED '
100, 1000 1000 1000 g P I
8]_1: I Wal'lt tO buy; 1 o [ Score=0.5x 0.5 x 0.5 = 0.125 o B PDTB Score ~0.206 B PDTB Score = 0414 1
. s 1 S AN R S N,
s12: they run from you; . Z \ :
s13:_they keep changing their prices : - S \ o .
s21: It’s very frustratin . Py gy puewioay Y O '
< = T3 ) 1 L-7B-Chat L-13B L-13B-Chat V-13B w W-Code W-Math 1
Salient signals: (s13, s21,7), 7 is “the reason for”. : g raserc o D o s o 0 romsen o g sz '
Targeted question: Is S13 the reason for S21 ? | o4 Different paraphrasing. :
Counterfactual question: Does s;13 contrast against : s e ottt s et T ot ' # Original I
Wizard-13B-Code Wizard-138-Math 0.3 ‘O Paraphrase 1 ]
S217 1 el Cansiteney Consistency Paraphrase 2 '
Converse question: IS 82]_ the I'CSlllt Of 813 ? : u] ¥ggB§Scori: 0.325 O PDTB Score = 0.135 : O PDTB Score = 0.225 : O PDTB Score = 0.234 0.2 1
/1 Score = 0.355 TED Score = 0.075 I/ TED Score = 0.207 " TED Score = 0.204 I
. 8 = ; 0.1 1
: Targeted Counte rfactual £l Counterfactual Targeted Counterfactual Targeted Counter rfactual O NO I
1 0L-7B L-7B-Chat L-13B L-13B-Chat V-13B w W-Code W-Math :
L] L] L[] L] [ ] I
DiSQ is a new formalization using : !
1
’ . 1 . . .
QA to evaluate models’ faithfulness . We find open-source models are behind closed-source ones, but we recommend :
1
M M M L] L] L] L] L] [ ] L] L] I
1
in understanding discourse. v linguistic features to exploit. Variations of DiSQ Scores show consistency. ;
A

------------------------------------------------------------------------------------’

e 26
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Evaluation

RQ4: Impact of Linguistic Features

w/o history  w/ history

LLaMA2-13B-Chat 78.6 70.1
Vicuna-13B 82.8 88.7
Wizard-Code 81.6 99.8

Models’ consistency score with the help of
previous QA history.

- Wizard code is nearly perfect.

« LLaMA2-13B-Chat has lower
performance.

29

B Unidirectional

“happen before”
“happen after”

Mean Consistency Score
= 60.6

0.0 25.0 50.0 75.0 100.0

Bidirectional

Mean Consistency Score
=79.2

“happen at the same time as”
“contributed to the same situation”

0.0 25.0 50.0 75.0 100.0

LLaMAZ2’s consistency scores per guestion.

Conjecture: LLaMA2 model can only pay attention to
verbatim keywords, and cannot do the real
reasoning given previous QA.



Evaluation

RQ3: Impact of Discourse Relations on DiSQ Scores

y > > § §
& - ~y "
: ) S g g
%'s,e. 'w"{? Ng? & Q';}Q gg’m 3 &
4
y & & & ¢ o g o
5 ¥ ¥ b & S ¢ 3 & &
¥ > > y S 3 s § A S
X F F & & Cig & ® N C
§ : : 3 ¥ & . . . ¥
N N S 2 W W >3 S ISy ISy
& & & S § § § § & &
Q) IS Ies; Q) O O @ @ & &
LLaMA2-7B 0.087 0.07 0.066 0.156 0.095 0.094 0.005 0.032 0.037 0.009
LLaMA2-7B-Chat 0.12 0.067 0.158 0.199 0.174 0.131 0.149 0.239 0.116 0.025
LLaMA2-13B 0.113 0.116 0.107 0.086 0.097 0.082 0.037 0.037 0.085 0.076
LLaMA2-13B-Chat 0.326 0.289 0.383 0.291 0.172 0.129 0.155 0.197 0.203 0.122
Vicuna-13B 0.334 0.273 0.487 0.195 0.353 0.2 0.048 0.091 0.53 0.354
Wizard 0.167 0.132 0.128 0.108 0.107 0.067 0.22 0.22 0.102 0.043
Wizard-Code 0.283 0.269 0.335 0.174 0.287 0.175 0.053 0.03 0.558 0.417
Wizard-Math 0.24 0.405 0.314 0.201 0.286 0.241 0.161 0.128 0.248 0.143
Arg1lis the detail. Arg2 is the detail.

Findings: There are task difficulty asymmetries in converse relations.
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