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Abstract

Deep Question Generation (DQG) involves generating a com-
plex question given an input passage. This task involves rea-
soning over multiple sources of information in the passage.
To tackle this, Pan et al. (2020) leverages recent advances
in graph neural networks (GNN) to represent the passage
as a collection of phrases, where each phrase forms a node
in a graph. Then, to reason over this graph, information is
aggregated via a confined graph structure to combine them
to generate meaningful questions. However, what is unclear
at this moment is why is the graph important, which struc-
tures are important, and if this human imposed structure is
even required. This paper looks deeper into answering these 3
main questions via the following approaches: (1) A linguistic
heuristic approach to investigate the linguistic structures that
are crucial for reasoning in DQG, which can be used as struc-
tural priors for building better reasoning models, (2) A GNN
learnable approach to investigate the computational structure
the model uses and if this aligns with the human one, (3) Gen-
eralizing the GNN model used to allow the model to learn its
own computational graph structure for the reasoning task.

1 Introduction
How do humans compose a complex and natural sentence
over multiple pieces of concepts, evidence, and beliefs?
This question has puzzled computer and cognitive scien-
tists for decades. Such composition is a complex process.
It requires a broad range of abilities, including analyzing
the syntax of the text, understanding the semantic relation
among concepts, structurally combining multiple evidence
together, etc. With the advent of natural language process-
ing and graph learning techniques, we are rapidly approach-
ing this unsolved question. Notably, a cohort of researchers
is formalizing NLP tasks as reasoning on graphs, achieving
superior results.

One notable progress is made by Pan et al. (2020), where
they introduced the use of recent advances in GNNs to-
gether with encoder-decoder based frameworks for DQG.
In a nutshell, DQG involves encoding word representations
as a document, followed by constructing phrases from these
words as a node. A graph is then constructed on these nodes,
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where they use either Dependency Parsing (DP) or Seman-
tic Role Labeling (SRL). These graphs are built based on
some form of human inductive bias, and passed into a gated
graph attention network. The nodes get updated based on
the structure and the edge types in the graph. Once done,
these representations are used for a content selection task,
whereby phrases that appear in the final generated question
(ground truth) are considered as positive labels and other-
wise. Additionally, these node representations are combined
with a document-level representation, and fed into an atten-
tion decoder for question generation. The model is trained
on both content selection and question generation. Readers
are encouraged to read Pan et al. (2020)’s work for further
details.

While the DQG model proposed demonstrates promising
results, it has inherent limitations of using and interpreting
the semantic graph:

• Node level: Their method fails to explain why a node
is important. Although the authors did content selection
analysis, the scalar attention score is still not explain-
able. The real explanation should elaborate on the intrin-
sic properties of a node and local subgraph structure.

• Edge level: Their method actually produces a “reasoning
chain” (c.f. Figure 3 in (Pan et al. 2020)) by a few useful
edges connecting together. However, they did not analyze
and explain what edges are important.

• Subgraph level: From c.f. Figure 3 in (Pan et al. 2020)
we can see certain subgraph structures are crucial for the
reasoning. However, they did not explain the crucial sub-
graph structure and leave the irrelevant nodes being the
noise for further steps.

• Learning level: The authors assume that the graphs take
on a total of 3 relationships, as defined by human heuris-
tics. However, reasoning for models might not necessarily
be so; how humans construct graphs for reasoning might
be entirely different from how machines do so.

These limitations in this particular DQG paper motivate
us to reflect on what is being needed for explaining the rea-
soning on graphs. We have generated several key research
questions (RQs) to facilitate the understanding of reasoning
on the graph:



Figure 1: The DQG framework of Pan et al. (2020)

• RQ1: What structures and innate priors are essential for
reasoning on graphs?

• RQ2: Can we distill essential subgraph structures and are
these substructures similar to human bias?

• RQ3: Do machines require human-level heuristics in
learning?
RQ1 motivates a linguistic heuristic approach by look-

ing at essential node features and edge features. Linguistic
heuristic has been recently discussed in the context of neu-
ral NLP (Tenney, Das, and Pavlick 2019; Lei et al. 2018).
It is crucial for us to understand the inherent process of hu-
man and machine reasoning on graphs, which will in turn
help the NLP community build better reasoning models.
RQ2 motivates a GNN learnable approach to find subgraph
structures that are crucial for question generation. Specif-
ically, we adapt GNNEXPLAINER (Ying et al. 2019) into
our scenario. We investigate if the computational structure
aligns with the human heuristics of reasoning. RQ3 moti-
vates generalizing the DQG model such that it is allowed
to freely learn the relationships between nodes. Specifically,
we generalize the author’s graph attention network (GAT)
(Veličković et al. 2017) to a multi-headed one, where we
postulate that if we have more heads than edge types (in (Pan
et al. 2020)’s work, 3 edge types are defined), we should
be capable for learning beyond the human interpretation of
what the edges should be.

To this end, we arrive at the following conclusions:
• Based on linguistic heuristic, we identify crucial node fea-

tures and edge features that are decisive for reasoning on
graphs for DQG. It is intrinsically interesting because it
brings empirical evidence to demystify the reasoning on
graphs.

• With our developed framework, we are able to find an es-
sential subgraph structure for any input node of DQG in a
learnable approach. We find geometric features differ for
different types of nodes. We also locate the overlap be-
tween heuristic and learnable approaches.

• Human-level interpretation, at this moment, is required.
Allowing the model to freely learn the relationships ap-
pears to harm it more than help. We find that the content
selection task begins to under-perform when generalized
to a multi-headed attention approach. Consequently, the
quality of question generation reduces when this happens.

2 Related Work
2.1 Graphs for NLP
The NLP community has made decades of efforts on incor-
porating graph structures to incorporate graph structures to
improve the performance, robustness, and explainability, for
different NLP tasks. These efforts can be categorized into
two streams:
(1) Building knowledge graphs for NLP: WordNet (Strap-
parava, Valitutti et al. 2004) is the first large-scale knowl-
edge graph describing the semantic relations between words.
Its release has enabled a fast breakthrough in NLP in the
2000s. WordNet is then extended by ConceptNet (Speer,
Chin, and Havasi 2017). These resources has facilitated
many downstream downstream tasks like text summariza-
tion (Barzilay and Elhadad 1999) and contextual lexical rela-
tion (Lei et al. 2021). Recently, more commonsense knowl-
edge graphs are built to satisfy the deep understanding of
NLP tasks (Sap et al. 2019). One notable recent effort is
to distill a knowledge graph from scratch from BERT pre-
trained model (Wang, Liu, and Song 2020).
(2) Using knowledge graphs to facilitate NLP tasks:
Knowledge graphs are shown to help in a wide range of NLP
tasks, not limited to question answering (Zhu et al. 2021)
and question generation (Pan et al. 2019), but also include
natural language inference (Wang et al. 2019), discourse re-
lation recognition (Dai and Huang 2019). A recent effort in
(Lei et al. 2020) is using knowledge graph for conversational
recommendation (Gao et al. 2021). The path reasoning on
the graph keeps track of a conversation session. It brings im-
provement and explainability to the conversation.



2.2 Explanations for GNN
Graph neural networks have emerged recently, with the pri-
mary framework of neural message passing (Gilmer et al.
2017). Essentially, given a graph object, we can formulate
local messages as linear projections of representations, fol-
lowed by permutation-invariant functions to summarize lo-
cal neighborhoods. This framework has found its way to
a variety of tasks, such as key-point matching in images
(Zhang and Lee 2019) (Fey et al. 2020), semantic role label-
ing (Marcheggiani and Titov 2017), question-answering via
knowledge graphs (Saxena, Tripathi, and Talukdar 2020),
etc. This variety of tasks showcases the flexibility and ap-
plicability of graph structures. At the same time, it suggests
the innate priors and biases it contains based on how data is
structured or generated. Consequently, our community has
started reflecting on the success and expressiveness of GNN
models. GNNEXPLAINER model by Ying et al. (2019) was
proposed to find a compact subgraph structure that is es-
sential for model decision. One very contemporary work by
Schlichtkrull, Cao, and Titov (2021) designs a differentiable
masking strategy to explain GNNs for NLP tasks. However,
none of these works pay attention to explain the intrinsic
process of reasoning on the graph for complex NLP tasks.

3 Method

Notations Meaning
v Node. In our case, nodes are tokens or en-

tites. v ∈ V , the entire node set
x Feature of a node (aka node embedding)
e Edge. In our cases, edges are dependencies

between tokens and entities. e ∈ E, the en-
tire edge set.

v+ Relevant node, meaning the node is being
used in the ground truth question.

G The whole semantic graph, containing all
v and e.

G
′

A subgraph produced by GNNEXPLAINER
given one v+.

E+(i) Incoming edges for a node vi
E−(i) Outgoing edges for a node vi

Table 1: Key notations in this paper.

Formally, a graph is defined by a tuple (V,E), where v ∈
V is a set of vertices and e ∈ E a set of edges. An edge eij
denotes a connection between vertex vi and vj . In this work,
graphs are defined as per (Pan et al. 2020), where we have
a DP graph and a SRL graph. Each node is associated with
a collection of words, {wj}nv

j=mv
, where mv and nv denotes

the starting / ending position of the text span. We leverage
the implementations of Pan et al. (2020) for our work.

3.1 Linguistic Heuristic Approach
As we discussed before, reasoning on graphs to compose a
deep question is an extremely complex process. As a first at-
tempt to demystify this problem, we focus on the core com-
ponent of the DQG model, which is the content selection

module. The content selection module is designed to pre-
dict whether a node will be used in the final question gen-
erated. It is crucial for generating high-quality questions. In
the meantime, content selection module is a simple node
classification task. Such simplicity also drives us to focus
on it in this initiative exploration.

In order to identify what innate priors are crucial for rea-
soning on graphs, we take inspiration from linguistics and
design several probings:

• Node Probings: This probing aims to answer what node-
level linguistic properties are essential for content selec-
tion? These linguistic properties include part of speech,
whether the node is in the answer, etc. Our strategy is to
mask a specific segment in the node embedding x and ob-
serve the performance changes for content selection.

• Edge Probings: This probing aims to answer what edge-
level linguistic properties are essential for content selec-
tion? We adopt a simplistic edge masking solution. To
be specific, we group the edges e in DQG by linguistic
categories. We mask one type of edge each time and ob-
serve performance changes. A similar edge masking strat-
egy is adopted in a contemporary ICLR spotlight paper
(Schlichtkrull, Cao, and Titov 2021).

3.2 GNN Learnable Approach

In order to investigate how the machine works for a node
classification problem, we use GNNEXPLAINER, which can
provide interpretable explanations for predictions of a GNN-
based model.

GNNEXPLAINER takes a trained GNN and its predic-
tion(s) as input, and it generates an explanation in the form
of a compact subgraph structure and a small set of node fea-
tures that are important for this task, as shown in Figure 2.

Given a node v, GNNEXPLAINER uses n-hop neighbor-
hoods of the given node to find the subgraph GS with corre-
sponding features XS . The optimization framework of GN-
NEXPLAINER is:

max
GS

MI (Y, (GS , XS)) = H(Y )−H (Y | G = GS , X = XS)

(1)
where MI is the mutual information and Y are labels.
MI quantifies the change in the probability of predic-
tion when v′s computation graph is limited in the sub-
graph. Since GNNEXPLAINER works for a trained GNN,
the entropy term H(Y ) is constant. Maximizing the above
equation is equivalent to minimizing conditional entropy
H (Y | G = GS , X = XS), which can be optimized using
gradient descent after further transformation.

Although the author claims this approach is model-
agnostic, it is not easy to combine the complex DQG model
with GNNEXPLAINER directly. Therefore, we only con-
sider the most simplified case, training GNNEXPLAINER’s
default pure GNN model with the data used in DQG. Then
we use GNNEXPLAINER to explain all node v+ ∈ V + to
get all explained subgraphs.



3.3 Generalizing Learning of the Graph
Structure

A key feature in (Pan et al. 2020) is the construction of the
DP and SRL to form the graph structure. Then, it is assumed
that there exist 3 key relationships in these graphs: predicate,
subject/object, modifier. Each relationship is represented by
its own learnable weight matrixW tij , and neighboring node
representations are aggregated according to these relation-
ships. These weight matrices are combined with a common
set of attention coefficients α to aggregate and attend to
neighboring nodes accordingly. Based on the node types, the
authors mask nodes such that they are of one of the 3 rela-
tionships. This suggests that there’s a human bias imposed
on this; only nodes of the same type can share a particular
relationship and receive information from fellow nodes. The
following equations (taken verbatim from (Pan et al. 2020))
showcase how the authors construct the necessary message
passing and aggregation functions:

hNE+ (i) =
∑

vj∈NE+(i)

α
(k)
ij Wteijh

(k)
j (2)

hNE− (i) =
∑

vj∈NE−(i)

α
(k)
ij Wteijh

(k)
j (3)

α
(k)
ij =

exp(Attn(h
(k)
i ,h

(k)
j ))∑

t∈N(i)
exp(Attn(h

(k)
i ,h

(k)
t ))

(4)

where Attn(·, ·) is implemented as a single-layer neural
network such that a>[WAh

(k)
i ;WAh

(k)
j ] in which a and

WA are learnable parameters, and E+(i) and E−(i) denot-
ing the incoming and outgoing edges to node vi respectively.
Note that in calculating the attention scores, only neighbors
that are of the same node type (out of the 3) are considered.
Additionally, we found that only 1 set of attention weights
are generated as the authors opted to combine the various
aggregated node neighbors together before calculating the
final attention score.

These 3 edge relationships are defined based on human-
level understanding. However, they might not necessarily
be a suitable relationship for computations. Hence, to ex-
plore if we still require this human bias, we propose to
generalize the attention mechanism such that it is a multi-
headed one, removing the need to filter the relationships ac-
cordingly. Effectively, we postulate that given a graph con-
sisting of multiple relationships, can the model explicitly
learn the useful ones? Compared to the original work, we
do not ignore the potential of possible relationships that
could exist across node types. Additionally, we explore if
the model can learn a more efficient and effective relation-
ship given complete freedom. To this end, we generalize the
graph attention mechanism as such:

m
(l)
NE+(i)

=
∑

vj∈NE+(i)

α
(l)
+ Wh

(l)
j (5)

m
(l)
NE−(i)

=
∑

vj∈NE−(i)

α
(l)
−Wh

(l)
j (6)

where E+(i) and E−(i) denotes the incoming and out-
going edges to node vi respectively, α+, α− is a vector of
learnable attention weights for each node, and m a single
head attention head representation based on the direction of
the edges. Notably, instead of assuming that a single set of
attention coefficients suffice for the problem, we general-
ize the attention mechanism to take on a total of K heads.
Hence, each set of attention coefficients is generated inde-
pendently. In doing so, we ensure that K > 3, which al-
lows to model to learn beyond the 3 predefined relationships.
Here, each head could potentially represent one relationship.
As such, by introducing multi-headed attention, we grant the
model greater freedom to discover a set of possible relation-
ships that can aid it in the prediction and generation task.

We then fuse all the various attention heads together by
combining them using an affine transformation to achieve
a similar final hNE+(i)

and hNE−(i)
set of representations.

These are then passed onto the GRU cell to update the node’s
current representation. Concretely, we produce the follow-
ing neighborhood representation in (Pan et al. 2020) by the
following

h
(l)
NE+(i)

= W
(∥∥∥

k∈K
m

(l)
k,NE+(i)

)
(7)

h
(l)
NE−(i)

= W
(∥∥∥

k∈K
m

(l)
k,NE−(i)

)
(8)

where
∥∥∥ denotes the concatenation operation. We generate

these hidden representations and combine them accordingly
for the GRU cell update.

4 Experiment
4.1 Experiment Setup
Dataset: To evaluate the model’s capabilities, we adopt
the same training and testing dataset as Pan et al. (2020).
The HotpotQA (Yang et al. 2018) contains approximately
100,000 crowd-sourced questions from Wikipedia articles.
Each of these questions is accompanied by answers and re-
quires some form of reasoning over the set of supporting
facts. Following Pan et al. (2020), we retrieve the support-
ing documents and answers to generate a deep question. All
training and validation splits are maintained as per Pan et al.
(2020).
Evaluation Metrics: (1) Regarding the node classification
task in the content selection module, we adopt the accuracy
score (acc) as used in (Pan et al. 2020). We further adopt the
F1 score of the positive class for more practical analysis. (2)
To evaluate the output of the GNNEXPLAINER module, we
investigate the geometric properties of the subgraphs gener-
ated. Those geometric properties include subgraph size and
density. For undirected simple graphs, the graph density is:
D = 2|E|

|V |(|V |−1) (3)To evaluate the quality of the question
generated, we adopt the BLEU score (Papineni et al. 2002),
a popular metric in the natural language community. Specif-
ically, our performances are mainly measured with BLEU4,
meaning we take up to a 4-gram overlap. Generally, the
BLEU score ranges from 0 to 1, with 1 indicating the perfect
quality of generation.



Implementation Details: In our experiments, we main-
tain similar hyperparameters to the work done in (Pan et al.
2020). For both the linguistic heuristic approach and GNN
learnable approach, we directly use their trained model for
probing and explaining. For the multi-headed attention ap-
proach, we experiment with 2 settings, one where K = 4
and one where K = 8. For K = 8, we halved the batch size
to 16 due to GPU memory limits.

4.2 Linguistic Heuristic Approach (RQ1)
As we discussed in Section 3.1, the node probing task ex-
amines what node features are crucial for content selection.
To achieve that, we mask each segment of the embedding
and observe the performance change. To be specific, there
are three segments in node embeddings: x = xtype ⊕ xshow
⊕ xpos, indicating the node type (adjective, noun or verb),
whether the node is shown in the answer, and the part-of-
speech of the node, respectively.

Original Node
Type

Show In
Answer

Part-of-
Speech

F1/Acc 67.6/84.7 47.7/41.5 64.9/82.4 63.7/83.7

Table 2: Node probing on the content selection module.

From Table 2 we observe that masking each segment has a
negative impact on F1/acc score as compared to the original
F1/acc. It shows that all segments of the node embeddings
make positive contributions to the content selection module.
Interestingly the node type segment has the biggest impact.
One possible reason is that it only has three options (ad-
jective, noun, or verb). Such a focused objective helps the
model to leverage it. From a linguistic point, part-of-speech
can be seen as a finer-grained taxonomy of the node type. It
has 30 and more options, making the model harder to lever-
age on.

Original pobj SIMILAR nsubj
F1/acc 67.6/84.7 67.5/84.7 59.5/82.0 67.7/84.7
Frequency N/A 752k 353k 283k

cop partmod dobj conj
F1/acc 67.6/84.6 60.6/82.4 67.6/84.7 67.6/84.7
Frequency 225k 122k 118k 109k

Table 3: Edge probing on content selection module.

Our edge probing task adopts a very straightforward ap-
proach. We mask one type of edge at each time and observe
performance change on the F1/acc of the content selection
module. Table 3 summarizes the results of masking the most
common edges. We find that SIMILAR and partmod edges
have the biggest impact on content selection. It is intuitive to
understand the importance of SIMILAR edges, since SIMI-
LAR edges connect different sentences. The partmod edges
refer to the participial modifier of an NP or VP (De Marn-
effe and Manning 2008). It is not so intuitive and we leave
the explanation for its importance to future work. Interest-
ingly, we find that masking other edges have a little negative

impact or even positive impact: nsubj has acc of 67.7, be-
ing higher than 67.6 as the original acc. This result indicates
that there is possible redundancy in the graph design in the
model of (Pan et al. 2020).

Table 4 (refer to Appendix A for reference on abbrevia-
tions) summarizes the impact of different edges on different
nodes. We categorize nodes w.r.t. their part-of-speech and
report the results from the most common categories. The re-
sults align well with Table 3, since SIMILAR and partmod
have the largest negative impact on all nodes. We also ob-
serve positive effects of edge masking, for example, masking
nsubj has 0.29 positive impact on the F1 of NNS. These re-
sults may indicate that some nodes and edges are unlikely to
have synergies, providing clues for building simplified mod-
els in the future.

4.3 GNN Learnable Approach (RQ2)
As we discussed in Section 3.2, the GNNEXPLAINER mod-
ule takes a node v, its label and the whole graph G as input.
It outputs a compact subgraph structure G

′
being crucial for

its prediction.

Figure 2: Random output from GNNEXPLAINER

Human Observation: In order to assert the rationality of
GNNEXPLAINER on our corpus, we first manually exam-
ine 50 subgraphs produced by GNNEXPLAINER. One ran-
dom subgraph is shown in Figure 2. The node to be ex-
plained is “she”. The darker an edge is, the higher weight
this edge will receive. The produced subgraph shows that
the person’s identity (“chief”, “adult”, and “ambassador”)
is most closely related to the person and has the most
importance. This is followed by the country name (“the
United States”, “Ghana”, and “Czechoslovakia”) related to
the identity. There are also some important links between the
relevant countries (“Ghana” and “Czechoslovakia”). This
shows that the computational chain generated by GNNEX-
PLAINER is similar to human heuristics. The most ideal
case is to conduct human experiments to find if subgraphs
make sense. However, it is difficult in this initiative study
and is left for future work. We attach more of such subgraphs
in Appendix D.
Intrinsic Evaluation: GNNEXPLAINER model provides a
compact subgraph structure given a node to be explained.
It is natural to ask, what are the defining properties of such



NNP NN VBN VBZ NNS IN VBD CD PRP VBG
pobj -0.09 -0.12 0.05 0.07 -0.06 -0.27 0.02 -0.44 -0.23 0.32
SIMILAR -7.74 -8.21 -8.96 -7.28 -8.03 -8.54 -8.71 -8.69 -6.82 -8.96
nsubj 0.12 -0.02 0.09 0.16 0.29 0.15 -0.05 -0.24 0.17 0.36
cop 0.04 -0.03 0.08 -0.11 0.34 0.1 0.05 -0.16 -0.07 0.16
partmod -6.85 -7.15 -7.57 -5.72 -6.92 -7.08 -7.55 -8.13 -5.81 -7.61
dobj 0.05 -0.05 0.03 0.19 -0.02 0.03 0.04 -0.13 0.07 0.0
conj -0.08 -0.02 0.02 0.02 0.07 -0.08 0.1 -0.24 0.17 0.24

Table 4: Innate Priors: Fine-grained analysis of the impact of edges on nodes. Results are in relative F1: masking pobj edges
has -0.09 impact on the F1 of NNP nodes.

All Irrelevant Relevant NNP NN VBN VBZ NNS IN VBD CD PRP VBG
# Node 21.9 21.3 23.4 21.5 21.9 21.5 20.7 24.4 24.2 19.8 17.2 23.6 26.5
# Edge 22 21.3 24 21.6 22.1 21.6 20.8 24.7 24.3 19.6 16.9 24.2 26.9
Density 0.137 0.139 0.134 0.139 0.138 0.143 0.161 0.123 0.112 0.142 0.161 0.143 0.107
# Subgraph 2502 1836 666 726 590 202 160 185 147 108 88 56 46

Table 5: Geometric Properties: We summarize the geometric properties of subgraph w.r.t. their input node types.

NNP NN VBN VBZ NNS IN VBD CD PRP VBG
pobj 1241.6 996.7 315.9 193.2 280.6 207.4 129.7 180 93 60.4
SIMILAR 460.4 383.9 126.7 68.1 73.4 23.6 31 26.1 39.3 28.8
nsubj 113.4 149.2 33.9 36 67.7 18.8 36.9 15.9 28.1 9
cop 535.5 487.2 118.8 142 52.3 52 76.5 56.8 32.9 20.7
partmod 180.5 130.9 90.2 35.6 26.8 14.9 19.5 22.8 9.4 18
dobj 133.9 139.4 37.3 29.8 57.9 17.6 40.1 22.3 19.6 21.4
conj 160.7 117.8 38.4 18.1 40.4 25.3 16 13.5 5 6.9
# Subgraph 726 590 202 160 185 147 108 88 56 46

Table 6: Edge Weight: We summarize the edge weight in the subgraphs generated for different types of nodes.

graphs? Since we are unable to manually count all substruc-
tures, we investigate the following geometric properties of
the generated subgraphs: (1) the size of the graph (number
of edges and number of nodes), and the density of the sub-
graph.

Table 5 (refer to Appendix A for reference on abbrevia-
tions) summarizes these properties w.r.t. the type of the in-
put node to be explained. We sampled 100 data instances,
producing 2502 subgraphs. The mean number of nodes is
21.9, the mean number of edges is 22, and the mean den-
sity is 0.137. One interesting discovery is that the subgraph
of relevant nodes are larger than irrelevant node (23.4 >
21.3 w.r.t. # nodes). It implies that relevant nodes may re-
ceive more information from their neighboring node to be
used in the generated question. We also discover that verbs
tend to have higher subgraph density. For example, VBN,
VBZ, and VBD have density of 0.143, 0.161, and 0.142 re-
spectively, which are all significantly higher than the mean
density of 0.137. It aligns well with linguistics since verb is
the root of a sentence or a clause.
Extrinsic Comparison with Linguistic Heuristic Ap-
proach: Since we have intuitive discoveries for the intrinsic
properties of the subgraphs generated by GNNEXPLAINER,
we then conduct an extrinsic comparison with the linguistic
heuristic approach. We aim to answer whether GNNEX-
PLAINER’s subgraphs align well with the node-edge

importance discovered by the heuristic approach in Table
4 (refer to Appendix A for reference on abbreviations). To
achieve this, we calculate the edge weight in the subgraphs
and show the results in Table 6 (refer to Appendix A for
reference on abbreviations). For a specific type of node, we
find all the subgraphs generated for it, and sum up the edge
weights. For example, among all 726 subgraphs for NNP
nodes, the summed weight is 1241.6.

By comparing the linguistic heuristic approach (Table 4)
and GNNEXPLAINER (Table 6), we have the following dis-
coveries: (1) The two approaches overlap well on some
node-edge importance. For example, both linguistic heuris-
tic and GNNEXPLAINER assign high importance to SIM-
ILAR edges for all nodes. This consensus again asserts the
importance of SIMILAR edges that connect different sen-
tences together. (2) The two approaches also disagree on
some node-edge importance. For instance, linguistic heuris-
tics find partmod edges are important for the content se-
lection of all nodes. However, GNNEXPLAINER assigns a
lower weight for partmod. This inconsistency implies that
the way GNN models reasons on the graph might not obey
the linguistic prior of humans.



Figure 3: Training and validation accuracy of models

Figure 4: Training and validation loss of models

4.4 Generalizing Learning of Graph Structure
(RQ3)

Figures 3 and 4 showcases the model accuracy and losses
over the training period. Note that we stopped the model
early (15 epochs or so) and only show the first 7 epochs
of training as we observed that the model started to over-
fit rather quickly. Both results showcase a rather interesting
observation; increasing the number of heads of the graph at-
tention model does not drastically help it. The implementa-
tion in (Pan et al. 2020) consists of a single headed attention,
where we project the aggregations of 3 different relation-
ships. However, all 3 relationships share the same attention

Model BLEU4
Original 15.28486

Multi-headed Graph Attention (4 Heads) 15.26169
Multi-headed Graph Attention (4 Heads) 14.96905

Table 7: Comparison of BLEU4 scores produced by our
models

weight. Conversely, our multi-headed approach allows for
each head to learn its own attention weights. Technically,
this is better as it allows the model to learn beyond just 1
form of attention, improving its generalization capabilities
(Vaswani et al. 2017).

Table 10 (in Appendix B) compares the number of param-
eters across our models. Our 4-headed attention is roughly
3% larger than the original, and the 8-headed attention is 9%
larger. However, despite the larger model in 8-headed atten-
tion, we can see in Figure 3 that the accuracy in the con-
tent selection task drops drastically. We are unsure if this is
due to the model being significantly larger and hence need-
ing more data to learn, or the fact that we had to decrease
our batch size to fit the computations on a GPU. Neverthe-
less, the 4-headed attention model also signifies that even if
we provided slightly more compute power and freedom, our
model does not do exceedingly better.

Table 7 shows the best BLEU4 scores of the models. No-
tably, the best achieved multi-headed attention model is still
unable to beat the original model formulation. As discussed
earlier, despite having more parameters, we are unable to
achieve a better score.

Table 11 (in Appendix C) showcases a short and easy
question as well as the generated answers from the models.
From our analysis, when the question to be asked is clear,
almost all 3 models are able to ask very similar questions. In
longer and harder questions, the types of questions generated
can be quite different. However, we are unable to determine
if there’s a clear pattern as to whether we learn significantly
different questions. At the same time, we have not carried
out any human evaluation study to evaluate the models qual-
itatively.

5 Conclusion and Future Work
In this work, we have examined the importance of graphs
for the DQG task in a three-pronged approach. Linguistic
heuristics provide a principled way of examining important
information. However, this is limited in nature as there could
be many possibilities and requires a human expert. We then
showed that the computational graph shares similar traits
with our human understanding with the use of GNNEX-
PLAINER. At the same time, it is able to provide other in-
sights that are counter-intuitive, suggesting a model’s way
of interpreting is slightly different. Thus, we explored what
if we were to allow a model to decide freely on its own,
without additional human bias beyond the graph construc-
tion. Interestingly, we found that models can not be allowed
to run freely; the human interpretation and constraints are
still highly valuable for such NLP tasks.

Our work is an initial effort on explaining reasoning on
the graph for NLP, there are many loose ends. While the
accuracy or BLEU score indicates poorer performance, we
might be generating a more varied set of questions if the
model is given total freedom. Nevertheless, our work can
be furthered by including more human experts in evaluating
the model. The subgraphs generated by GNNEXPLAINER
can be examined by human experts to assert their rationality,
the final questions generated by different models can also be



compared by humans. We can also try to generalize our dis-
coveries on other NLP tasks that require graph reasonings.
For example, since we have discovered the importance of
certain node-edge relations in DQG, we can explore if such
relations still hold in other NLP tasks like QA, discourse,
and natural language inference.
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Appendix A Linguistic Description

Since we have many linguistic abbreviations in the paper, here we detail their full names and give a brief description.

Abbreviation Full Name or Description
NNP Proper noun, singular
NN Noun, singular
VBN Verb, past participle
VBZ Verb, present tense, third person singular
NNS Plural common nouns
IN Preposition or subordinating conjunction
VBD Verb, past tense
CD Cardinal number
PRP Personal pronoun
VBG Verb, gerund or present participle

Table 8: Part-of-speech: We details the full name or the description of the part-of-speech shown up in our paper.

Abbreviation Full Name or Description Description
pobj Object of a preposition The object of a preposition is the head of a noun phrase

following the preposition, or the adverbs “here” and
“there”.

nsubj Nominal subject A nominal subject is a noun phrase which is the syntactic
subject of a clause.

cop Copula A copula is the relation between the complement of a
copular verb and the copular verb.

partmod Participial modifier A participial modifier of an NP or VP is a participial verb
form that serves to modify the meaning of the NP or VP.

dobj Direct object The direct object of a VP is the noun phrase which is
the (accusative) object of the verb; the direct object of a
clause is the direct object of the VP which is the predicate
of that clause.

conj Conjunct A conjunct is the relation between two elements con-
nected by a coordinating conjunction, such as “and”,
“or”, etc.

Table 9: Dependencies: We detail the edges of dependency in our paper.

Appendix B Number of parameters across the models

Model Number of Parameters
Original 57,741,719

Multi-headed Graph Attention (4 Heads) 59,718,545
Multi-headed Graph Attention (8 Heads) 62,876,561

Table 10: Comparison of parameters across models



Appendix C Generated questions across various models

Question cooking light is an american monthly food and lifestyle magazine founded in 1987 .
vibe is an american music and entertainment magazine founded by producer quincy jones .

Ground Truth are both ” cooking light ” and ” vibe ” magazines ?
Model Generated Answer

Original are cooking light and vibe both magazines
4-Headed Attention cooking light and vibe , are both magazines ?
8-Headed Attention cooking light and vibe are both what ?

Table 11: Generated questions according to various models for short and easy texts

Appendix D Additional output examples from GNNEXPLAINER

Figure 5: Additional example output 1 from GNNEXPLAINER



Figure 6: Additional example output 2 from GNNEXPLAINER


