Conversational Recommendation

Advanced Methods Towards Conversational Recommendation

MSc Student: Yisong Miao Supervisor: Min-Yen Kan

What is conversational recommendation

Importance of this research project

The Importance of CRS (Conversational Recommendation System):

- Overcome the limitation of traditional static recommender systems, thus improve user's satisfaction and bring revenue for business!
- Embrace recent advances in conversation technology.

The Advances Brought By Our Work:

- We're the first to consider a realistic multi-round conversational recommendation scenario.
- Unifying CC(Conversation Component) and RC(Recommender Component), and propose a novel three-staged solution EAR.
- We build two datasets by simulating user conversations to make the task suitable for offline academic research.

Literature Review (1)

- Static Traditional Recommendation Systems:
- Collaborative Filtering
- Matrix Factorization
- Factorization Machine
- etc...
- Limitation 1:

- Offline: learn from user history data, so can only mimic user's history preference.

- Limitation 2:
- User cannot explicit tell system her preference.
- System cannot leverage user's feedback.

Existing online recommendation methods (bandit):

- epsilon-greedy
- Thompson-Sampling
- Upper Confidence Bound (UCB)
- Linear-UCB
- Collaborative UCB...

Limitation:

- Can only attempt to recommend items, cannot ask attributes of item
- The mathematics formulation of bandit restricts it to only recommend 1 item each turn.

Literature Review (2)

Towards Conversational Recommendation — Sun et.al. SIGIR 2018

Limitation:

- Can only recommend for 1 time.
 The session will end regardless of success or not.
- Recommender Component and Conversation Component are isolated part.
- Simply taking belief tacker as input for action decision.

Workflow of multi-round Conversational Recommendation Scenario

- One session is started by the user specifying a desired attribute.
- One session will be stopped only when the recommendation is successful or the user quits.

Method: EAR- Estimation, Action, Reflection Deep interaction among CC_(conversation system) and RC (recommendation system)

Estimation:

• RC ranks the candidate item and item attribute.

Action:

• CC takes into account ranked items and ranked attributes to decide whether to ask attribute or make recommendation

Reflection:

• When user rejects list of recommendation, the RC adjusts its estimation for user.

Search or Recommendation

Search:
User's Intention is totally clearConversational Recommendation:
Try to induce user preference
through conversation!

Recommendation: User's Intention is totally unclear

- We have 4 Key Research Tasks:
 - I. What item to recommend?
 - 2. What attribute to ask?
 - 3. Strategy to ask and recommend?
 - 4. How to adapt to user's online feedback?

Objective: Accurately recommend item to user in shortest turns

 How to rank top that restaurant she really wants within all candidates remained?

 What question should I ask next, so she can give me positive feedback? given the attributes I already know.

Preliminary - FM (Factorization Machine) De Facto Choice for recommender system

Feature vector x											ſ	Targ	get y										
X ⁽¹⁾	1	0	0		1	0	0	0		0.3	0.3	0.3	0		13	0	0	0	0			5	y ⁽¹⁾
X ⁽²⁾	1	0	0		0	1	0	0		0.3	0.3	0.3	0		14	1	0	0	0			3	y ⁽²⁾
X ⁽³⁾	1	0	0		0	0	1	0		0.3	0.3	0.3	0		16	0	1	0	0			1	y ⁽²⁾
X ⁽⁴⁾	0	1	0		0	0	1	0		0	0	0.5	0.5		5	0	0	0	0			4	y ⁽³⁾
X ⁽⁵⁾	0	1	0		0	0	0	1		0	0	0.5	0.5		8	0	0	1	0			5	y ⁽⁴⁾
X ⁽⁶⁾	0	0	1		1	0	0	0		0.5	0	0.5	0		9	0	0	0	0			1	y ⁽⁵⁾
X ⁽⁷⁾	0	0	1		0	0	1	0		0.5	0	0.5	0		12	1	0	0	0			5	y ⁽⁶⁾
	A	B Us	C ser		ТІ	NH	SW Movie	ST e		TI Otl	NH her N	SW lovie	ST s rate	 ed	Time	<u>п</u>	NH ₋ast I	SW Novie	ST e rate	 ed			

- A framework to learn embedding in a same vector space.
- Capture the interaction between vectors by their inner product.
- Co-occur, similar.

Notation	Meaning
u	User embedding
v	Item embedding

Score Function to decide how likely user would like an item:

 $\hat{y}(u, v, \mathcal{P}_u) = \mathbf{u}^T \mathbf{v} + \sum \mathbf{v}^T \mathbf{p_i}$ $p_i \in \mathcal{P}_u$

P_u={p_1,p Known user preferred attributes in _2,..., p_n} current conversation session.

Method: Bayesian Personalized Ranking

$$L_{bpr} = \sum_{(u,v,v')\in\mathcal{D}_1} -\ln\sigma\left(\widehat{y}(u,v,\mathcal{P}_u) - \widehat{y}(u,v',\mathcal{P}_u)\right) + \lambda_{\Theta} \|\Theta\|^2$$
Positive sample Negative sample

Notation	Meaning
$\mathcal{D}_1 \coloneqq \{(u, v, v') v' \in \mathcal{V}_u^-\},\$	Paired sample for BPR learning
v	The positive sample: the item in current conversation
${\mathcal V}_u^- := \ {\mathcal V} \setminus {\mathcal V}_u^+$	Item that user never interacted with
σ	Sigmoid function
λ_{Θ}	Regularization

Method: Attribute-aware BRP for item prediction and attribute preference prediction

Notation	Meaning
(Neg. 1) $\mathcal{V}_u^- := \mathcal{V} \setminus \mathcal{V}_u^+$	The ordinary negative sample as in standard BPR.
(Neg. 2) $\widehat{\mathcal{V}_u^-} \coloneqq \mathcal{V}_{cand} \setminus \mathcal{V}_u^+$	\mathcal{V}_{cand} is the set of candidate items satisfying user's preferred attributes.
$\mathcal{D}_1 \coloneqq \{(u, v, v') v' \in \mathcal{V}_u^-\}$	Paired sample for first kind of negative sample
$\mathcal{D}_2 \coloneqq \{(u, v, v') v' \in \widehat{\mathcal{V}_u}\}$	Paired sample for second kind of negative sample

Li	tem				
-	Σ	$-\ln\sigma(\hat{y})$	$(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{\mathcal{P}}_{\boldsymbol{u}})$ –	$\widehat{y}(u,v',\mathcal{P}_u)$)
	$(u,v,v')\in\mathcal{D}$	1			
+	Σ	$-\ln\sigma(\hat{y})$	$(u, v, \mathcal{P}_u) -$	$\hat{y}(u,v',\mathcal{P}_u)$)
	$(u,v,v')\in \mathcal{D}_{2}$	2			
+	$\lambda_{\Theta} \ \Theta\ ^2$				

Notation	Meaning
p	A given attribute
u	User embedding
\mathcal{P}_{u}	User's known preferred attributes

$$L_{attr} = \sum_{(u,p,p')\in\mathcal{D}_3} -\ln\sigma\left(\widehat{g}(p|u,\mathcal{P}_u) - \widehat{g}(p'|u,\mathcal{P}_u)\right) + \lambda_{\Theta} \|\Theta\|^2$$
$$\widehat{g}(p|u,\mathcal{P}_u) = u^T p + \sum_{p_i\in\mathcal{P}_u} P^T P_i \quad \begin{array}{c} \text{Score function for} \\ \text{attribute preference prediction} \end{array}$$
$$L = L_{item} + L_{attr} \text{ Multi-task Learning}$$

Note: We use information gathered by CC(conversation part) to enhance the RC!

Research Task 3: Strategy to ask and recommend?

This time, I try to recommend. more earlier...

Should

recommend?

Should

recommend?

Method: Research Task 3: Strategy to ask and recommend? (action stage)

We use **reinforcement learning** to find the best strategy.

- policy gradient method
- simple policy network of 2-layer feedforward network
- State Vector
- s_{entropy}: The entropy of attribute is important.
- *s*_{prefrence}: User's preference on each attribute.
- *s*_{history}: Conversation history is important.
- *s*_{length}: Candidate item list length.

Note: 3 of the 4 information come from Recommender Part

Reward

*r*_{success}: Give the agent a big reward when it successfully recommend!

 r_{ask} : Give the agent a small reward when it ask a correct attribute.

 r_{quit} : Give the agent a big negative reward when the user quit (the conversation is too long)

 $r_{prevent}$: Give each turn a relatively small reward to prevent the conversation goes too long.

Action Space:

She rejected my recommended 10 items... However, that is what she should love according to her history. How can I induce her current preference with this 10 items?

Method: Research Task 4: How to adapt to user's online feedback? (Reflection stage)

Solution: We treat the recently rejected 10 items as negative samples to retrain the recommender, to adjust the estimation of user preference.

$$L_{ref} = \sum_{(u,v,v')\in\mathcal{D}_4} -\ln\sigma\left(\widehat{y}(u,v,\mathcal{P}_u) - \widehat{y}(u,v',\mathcal{P}_u)\right) + \lambda_{\Theta} \|\Theta\|^2$$

Notation	Meaning
\mathcal{V}^t	Recently rejected item set.
$\mathcal{D}_4 \coloneqq \{(u, v, v') v' \in \mathcal{V}_u^+ \land v' \in \mathcal{V}^t\}$	Paired sample for online update.

Experiment setup (I) - Dataset Collection

Dataset Description

NANNAN	Dataset	#user	#item	#interactions	#attributes
	Yelp	27,675	70,311	1,368,606	590
	Last.FM	1,801	7,432	76,693	33

Why we need to create dataset?

- There's no existing datasets specially for CRS as this field is very new.
- Datasets of previous work has too few attributes for real-world applications.

How we create dataset?

- Standard pruning operation (user / item has < 5 reviews)
- For Last.FM, we build 33 Binary attributes for Last.FM (Classic, Popular, Rock, etc...)
- For Yelp, we build 29 enumerated attributes on a 2-level taxonomy over 590 original attributes.

Experiment setup (2)

User simulator

- Lack an offline experiment environment for conversational recommendation.
- We use the real interactions pair between user and item.
- The user simulator will keep the target item in "its heart", then give responses interactively to our agents. Responses include give answer to a question, and accept/reject item when our agent proposes a list of recommendation.

Training details

- We set the max length of conversation to 15, and fix the length of recommendation list to 10.
- We use SGD optimizer to train FM model(hidden size = 64), with L2 regularization of 0.001, the learning rate of item prediction is 0.01 and attribute prediction is 0.001
- For the policy network(MLP), we use 2 layer hidden size of 256, we pre-train it as a classifier according to max-entropy results, and use REINFORCE algorithm to train with learning rate of 0.001. r_success = 1, r_ask=0.1, r_quit=-0.3, r_prevent=-0.1, discount factor γ=0.7

Main Experiment Results

Evaluation Matrices:

- SR @ k (Success rate at k-th turn)
- AT (Average turn of conversation)

Table 2: SR@15 and AT of compared methods. * denotes that improvement of EAR over other methods is statistically significant for p < 0.01 (RQ1).

	Last	FM	Yel	p
	SR@15	AT	SR@15	AT
Abs Greedy	0.209	13.63	0.271	12.26
Max Entropy	0.290	13.61	0.919	5.77
CRM	0.325	13.43	0.923	5.33
EAR	0.429*	12.45*	0.971*	4.71*

Experiment results – Task I & Task2: item and attribute prediction (Estimation stage)

	Las	tFM	Yelp Item Attribut 0.834 0.654		
	Item	Attribute	Item	Attribute	
FM	0.521	0.727	0.834	0.654	
FM+A	0.724	0.629	0.866	0.638	
FM+A+MT	0.742*	0.760*	0.870*	0.896*	

The offline AUC score of prediction of item and attributes

- Standard FM model,
- FM + A (attribute aware item BPR)
- FM + A + MT (Multitask learning)

Experiment results – Task 3: Strategy to ask and recommend? (Action stage)

Table 4: Performance of removing one component of the state vector (Equation 10) from our EAR. * denotes that improvement of EAR over model with removed component is statistically significant for p < 0.01 (RQ 3).

		Ye	lp			Last	FM	
	SR@5	SR@10	SR@15	AT	SR@5	SR@10	SR@15	AT
-s _{ent}	0.614	0.895	0.969	4.81	0.051	0.190	0.346	12.82
-s _{pre}	0.596	0.857	0.959	5.06	0.024	0.231	0.407	12.55
-s _{his}	0.624	0.894	0.949	4.79	0.021	0.236	0.424	12.50
-s _{len}	0.550	0.846	0.952	5.44	0.013	0.230	0.416	12.56
EAR	0.629*	0.907*	0.971*	4.71*	0.020	0.243*	0.429*	12.45*

We conducted ablation study on the state vector fed into policy network, in order to find the contribution of each component.

entropy seems to be the most salient component.

Experiment Result: Research Task 4: How to adapt to user's online feedback? (reflection stage)

Table 5: Performance after removing the online update module in the reflection stage. * denotes that improvement of EAR over removing update module is statistically significant for p < 0.01 (RQ4).

		Yel	p		LastFM SR@5 SR@10 SR@15 AT			
	SR@5	SR@10	SR@15	AT	SR@5	SR@10	SR@15	AT
-update	0.629	0.905	0.970	4.72	0.020	0.217	0.393	12.67
EAR	0.629	0.907	0.971	4.71	0.020	0.243*	0.429*	12.45*

Performance of removing the online update module. Yelp suffers less than LastFM, Why?

- Yelp dataset has a better offline AUC.
- When offline AUC is higher, the reflection stage tend to have less effect.

Conclusion and Future Works

- We formalize the task of multi-turn conversational recommendation
- We refine the recommendation system in a conversational scenario for attribute-aware item ranking and attribute-aware preference estimation.
- We proposes a three-stage solution EAR for CRS, outperforming state-ofthe-art baselines.
- We plan to do online evaluation and obtain real-world exposure data by collaborating with E-commerce companies.
- Our paper is recently accepted by WSDM2020 at Houston, USA! Titled Estimation-Action-Reflection: Towards Deep Interaction Between Conversational and Recommender Systems

